Please use this identifier to cite or link to this item: http://digitalrepository.fccollege.edu.pk/handle/123456789/2623
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMalik, Dr. Shabnam-
dc.contributor.authorQureshi, Dr. Ahmad Mahmood-
dc.date.accessioned2024-12-12T07:03:03Z-
dc.date.available2024-12-12T07:03:03Z-
dc.date.issued2024-04-
dc.identifier.citationMalik, Shabnam & Qureshi, Ahmad. (2024). Hamiltonicity in directed Toeplitz graphs Tn<1, 3, 5; t>. Bulletin mathématiques de la Société des sciences mathématiques de Roumanie. 67 (115). 239–252.en_US
dc.identifier.issn239–252-
dc.identifier.urihttp://digitalrepository.fccollege.edu.pk/handle/123456789/2623-
dc.descriptionA directed Toeplitz graph Tn⟨s1, . . . , sk; t1, . . . , tl⟩ with vertices 1, 2, . . . , n, where the edge (i, j) occurs if and only if j − i = sp or i − j = tq for some 1 ≤ p ≤ k and 1 ≤ q ≤ l, is a digraph whose adjacency matrix is a Toeplitz matrix (a square matrix that has constant values along all diagonals parallel to the main diagonal). In this paper, we study hamiltonicity in directed Toeplitz graphs Tn⟨1, 3, 5; t⟩.en_US
dc.description.abstractA directed Toeplitz graph Tn⟨s1, . . . , sk; t1, . . . , tl⟩ with vertices 1, 2, . . . , n, where the edge (i, j) occurs if and only if j − i = sp or i − j = tq for some 1 ≤ p ≤ k and 1 ≤ q ≤ l, is a digraph whose adjacency matrix is a Toeplitz matrix (a square matrix that has constant values along all diagonals parallel to the main diagonal). In this paper, we study hamiltonicity in directed Toeplitz graphs Tn⟨1, 3, 5; t⟩.en_US
dc.description.sponsorshipN/Aen_US
dc.language.isoen_USen_US
dc.publisherresearchgate.neten_US
dc.subjectAdjacency matrix, Toeplitz graph, Hamiltonian graph, length of an edge.en_US
dc.titleHamiltonicity in directed Toeplitz graphs Tn⟨1, 3, 5; t⟩en_US
dc.typeArticleen_US
Appears in Collections:Mathematics Department

Files in This Item:
File Description SizeFormat 
S._Malik_(April_2024)[1].pdf555.89 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.