Please use this identifier to cite or link to this item:
http://digitalrepository.fccollege.edu.pk/handle/123456789/2645
Title: | An Analytical Study of Adversely Affecting Radiation and Temperature Parameters on a Magnetohydrodynamic Elasto-viscous Fluid |
Authors: | Shahid, Dr. Nazish |
Keywords: | elasto-viscosity thermal radiation thermal diffusion mass diffusion velocity temperature magnetic field |
Issue Date: | 12-Mar-2019 |
Publisher: | Mathematical and Computational Applications |
Citation: | Shahid, N. (2019). An analytical study of adversely affecting radiation and temperature parameters on a magnetohydrodynamic elasto-viscous fluid. Mathematical and Computational Applications, 24(1), 31. |
Abstract: | An investigation of how the velocity of elasto-viscous fluid past an infinite plate, with slip and variable temperature, is influenced by combined thermal-radiative diffusion effects has been carried out. The study of dynamics of a flow model leads to the generation of characteristic fluid parameters ( G r , G m , M, F, S c and P r ). The interaction of these parameters with elasto-viscous parameter K ′ is probed to describe how certain parametric range and conditions could be pre-decided to enhance the flow speed past a channel. In particular, the flow dynamics’ alteration in correspondence to the slip parameter’s choice, along with temperature provision to the boundary in temporal pattern, is determined through uniquely calculated exact expressions of velocity, temperature and mass concentration of the fluid. The complex multi-parametric model has been analytically solved using the Laplace and Inverse Laplace transform. Through study of calculated exact expressions, an identification of variables, adversely (M, F, S c and P r ) and favourably ( G r and G m ) affecting the flow speed and temperature has been made. The accuracy of our results have also been tested by computing matching numerical solutions and by graphical reasoning. The verification of existing results of Newtonian fluid with varying boundary condition of velocity and temperature has also been completed, affirming the veracity of present results. |
Description: | N/A |
URI: | http://digitalrepository.fccollege.edu.pk/handle/123456789/2645 |
Appears in Collections: | Mathematics Department |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.